Levels of Plasma Homocysteine in Obese Women Subjects
Homocysteine and Obesity

Obez Kadın Hastalarda Plazma Homosistein Seviyeleri
Homosistein ve Obezite

ABSTRACT

OBJECTIVE: An increased homocysteine level is an independent risk factor for vascular diseases. The present study was designed to evaluate plasma homocysteine levels in obese women compared with non-obese healthy women.

MATERIAL and METHODS: We selected 55 obese women (mean age 47.2±9.2 years) having a body mass index ≥ 30 kg/m² and 50 non-obese healthy women matched for age (mean age 46.3±9.5 years) who attended our outpatients clinic. We measured levels of homocysteine in obese and non-obese groups.

RESULTS: No significant difference was observed between obese and non-obese control groups regarding the homocysteine levels (10.3±3.5 µmol/l vs. 10.1±3.8 µmol/l, p>0.05). In this selected study population as a whole, the correlation between homocysteine levels and body mass index did not attain statistical significance (r=0.12, p>0.05).

CONCLUSION: We found that homocysteine levels were comparable between middle-aged obese and non-obese women. Our data may suggest that increased cardiovascular risk in obese women is probably not related to the homocysteine level.

KEY WORDS: Obesity, Homocysteine, Body mass index, Cardiovascular risk

ÖZ

AMAÇ: Artmış homosistein seviyesi vasküler hastalıklar için bağımsız bir risk faktörüdür. Bu çalışma, obez ve obez olmayan kadınlarda plazma homosistein düzeylerinin değerlendirilmesine yönelik tasarlanmıştır.

GEREÇ ve YÖNTEMLER: Çalışmaya polikliniğiimize başvuran, vücut kitle indeksi ≥ 30 kg/m² olan 55 obez kadın (ortalama yaş 47.2±9.2 yıl) ve aynı yaş grubundan (ortalama yaş 46.3±9.5 yıl) 50 obez olmayan sağlıkli kadınsı seçik. Obez ve obez olmayan gruplarda homosistein düzeylerini ölçtük.

BULGULAR: Obez ve obez olmayan kontrol grubu arasında homosistein düzeyleri (10.3±3.5 µmol/l vs. 10.1±3.8 µmol/l, p>0.05) açısından anlamlı farklılık tespit edildi. Çalışmaya seçilmiş populasyonunda, homosistein seviyeleri ile vücut kitle indeksi arasında istatistiksel olarak anlamlı korelasyon tespit edildi (r=0.12, p>0.05).

SONUC: Orta yaş obez ve obez olmayan kadınlarda homosistein düzeylerinin benzer olduğunu saptadık. Verilerimiz obezitede artmış kardiyovasüler risk ile homosistein düzeyleri arasında ilişki olduğuna işaret edebilir.

ANAHTAR SÖZCÜKLER: Obezite, Homosistein, Vücut kitle indeksi, Kardiyovasüler risk

Received : 11.10.2013
Accepted : 20.01.2014

Correspondence Address:
Vural Taner YILMAZ
Akdeniz Üniversitesi Tıp Fakültesi, İş Hastalıkları Anabilim Dalı, Nefroloji Bilim Dalı, Antalya, Turkey
Phone : + 90 242 249 61 21
E-mail : vuraltaneryl@yahoo.com.tr
INTRODUCTION

Obesity is a chronic metabolic disorder associated with cardiovascular disease (i.e., insulin resistance and type 2 diabetes mellitus, dyslipidemia, hypertension), and increased morbidity and mortality (1-3).

Homocysteine (Hcy) is a metabolic product of methyl group donation by the amino acid methionine. Hcy is controlled both by mutations in its regulating enzymes and by the B vitamins, folic acid, B12 and B6 (4,5). Hcy has several potentially deleterious vascular actions such as oxidative stress, endothelial dysfunction, and stimulation of thrombosis (6). There are various studies on the association between homocysteine and vascular diseases. Hyperhomocysteinemia has been linked to an increased risk of cardiac events, sudden death, stroke, essential hypertension, coronary, carotid, cerebral, and peripheral arterial disease, and venous and pulmonary thromboembolism (7-12).

Conflicting data have been published on the association of Hcy and obesity. Therefore, the present study was designed to evaluate plasma Hcy levels in obese women compared with non-obese healthy women.

PATIENTS and METHODS

This study was performed at the outpatients clinic of the Department of Internal Medicine of Akdeniz University Hospital. Our study was conducted on obese women who wanted to lose weight. We selected 55 obese women (mean age 47.2±9.2 years) having a body mass index (BMI) ≥ 30 kg/m² and 50 non-obese healthy women matched for age (mean age 46.3±9.5 years) and occupation who attended our outpatients clinic. All patients gave their informed consent to participate in the study.

Exclusion criteria for entry into the study were drug use (including vitamin supplements), alcohol and/or coffee abuse, smoking habit, dyslipidemia, sustained hypertension, diabetes mellitus, renal failure, heart failure, cerebrovascular disease, ischaemic heart disease, peripheral vascular disease, hypothyroidism, high serum uric acid, psoriasis, confirmed macrocytic anemia and heavy physical activity. Folic acid and vitamin B12 levels are within the normal range in all subjects.

Eligible subjects underwent a comprehensive assessment including documentation of medical history, physical examination, and measurement of laboratory variables. Body weight and height were measured with the subjects in light clothes and without shoes. BMI was calculated as the weight (kg)/height squared (m²).

Blood samples were collected from an antecubital vein without the use of a tourniquet, between 08.30 and 09.00 h. The enzymatic colorimetric assay method (Roche Diagnostic GmbH, Mannheim, Germany) was used to measure triglyceride, cholesterol and HDL-C levels. The LDL-C level was calculated according to Friedewald formula (13). Fasting plasma glucose level was measured by the enzymatic colorimetric assay method (GLU, Roche Diagnostic GmbH, Mannheim, Germany).

The plasma specimens were drawn after a fasting period of 12 h and were kept in tubes containing EDTA. Plasma got separated from the red blood cells within 1 h of collection as synthesis and excretion of Hcy continued in the cells after sampling. Prior to analysis, all specimens were stored in a frozen state (−20°C). We applied two levels of internal quality standards before the assay. Level 1 had a value in the normal range and level 2 had a value above the threshold.

The disulphide bands in the calibrant/sample were reduced using the reducing agent. Protein was precipitated from solution and the thiol groups in the supernatant were than derivatised with a fluorescent thiol-specific dye. The fluorescent derivative mixture was then separated using the Drew DS 30 Hcy analyser which automatically calculates the Hcy concentration using suitable derivatives which are separated and detected by their fluorescence (λex=385 nm, λem=515 nm). Quantitative evaluation of the Hcy concentration was achieved by comparison with two-point calibration.

Statistical Analysis

Statistical analysis was performed using SSPS 10.0 statistical software. For α=0.05 (between each group) and power=80%, a sample size per group >36 subjects was needed to detect an actual difference. Two-group comparisons (obese vs. non-obese) were performed with independent t-tests. Pearson’s correlation was used to evaluate the association between Hcy levels and BMI. The values were given as mean ± standard deviation. P<0.05 was accepted as statistically significant.

RESULTS

Clinical and laboratory parameters of the study population are reported in Table I. Metabolic parameters were not different between obese and non-obese control groups, as a results of the selection process (p>0.05). BMI was significantly higher in the obese group than in the non-obese control group (34.1±3.3 kg/m² vs. 23.4±5.1 kg/m², p<0.001).

No significant difference was observed between the obese group and control group regarding the Hcy levels (10.3±3.5 µmol/l vs. 10.1±3.8 µmol/l , p>0.05). In this selected study population as a whole, the correlation between Hcy levels and BMI did not attain statistical significance (r=0.12, p>0.05).

DISCUSSION

Although obesity is one of the most important risk factors for cardiovascular disease and generally the Hcy levels increase in obesity, the Hcy levels in our study were similar between the obese and non-obese groups.

Many studies have shown that elevated Hcy and obesity are both associated with increased cardiovascular disease risk. However it is unclear if these two risk factors are interrelated. Marchesini et al. reported that Hcy levels were moderately increased in obese individuals when compared with the normal
population and higher in males than in females (p<0.0002), but not different in relation to the severity of obesity (14). Similarly in Tungtrongchitr et al’s study, statistically significantly higher levels of serum Hcy concentrations were found in the overweight subjects, and serum Hcy concentrations in overweight and obese males were significantly higher than females. In addition, this study demonstrated that this result may caused by insufficiency dietary folic acid intake (15). Konukoglu et al. reported that plasma Hcy concentrations were higher in obese diabetics than in non-obese diabetics (16). Akoglu et al. found a positive correlation between plasma Hcy levels and BMI in liver transplant recipients (17). Jacques et al. reported that persons with the largest weight-for-height (BMI≥ 30.7) had slightly greater plasma Hcy concentrations than did those with a BMI< 30.7 (18). Koehler et al also reported a weak positive relation between BMI and Hcy concentrations (19), but Lussier-Cacan et al. observed no association. In this study, while serum folic acid levels were higher in females than males, serum Hcy levels were higher in males than females. This result may indicate that hyperhomocysteinemia was due to lower levels of folic acid (20). The Hordaland Homocysteine Study investigators reported a U-shaped association between BMI and Hcy concentrations that disappeared after adjustment for other determinants of Hcy concentrations (21). Uysal et al. reported that Hcy levels were comparable between obese and non-obese subjects (22). Brasilerio et al demonstrated that obesity was not a determinant factor of Hcy levels (23). In Fonseca et al’s study, there was no relationship between Hcy and BMI (24). The different results of the studies may be due to factors such as different sample size, subject characteristics, equipment and/or technique for measuring Hcy levels and genetic or nutritional factors (involved in Hcy metabolism).

Certain factors are related to total Hcy levels. Sex is one of the stronger determinants of Hcy. Previous studies reported that Hcy levels were higher in obese men than in obese women. Whenever reported, the sex difference has been ascribed to various factors; including different rates of Hcy formation, the presence of larger muscle mass and greater creatinine phosphate synthesis in men and a lowering effect of estrogen in women (20). Our study was conducted on obese women who wanted to lose weight. Therefore, we have not performed an analysis of Hcy levels as regards gender.

The present study has some limitations. First, we excluded patients with clinically overt cardiovascular disease (such as coronary artery disease, cerebrovascular disease and renal failure) to clarify the specific levels of BMI-related abnormalities. However, obesity is associated with numerous comorbidities, including hypertension, dyslipidemia, cardiovascular disease, non-insulin-dependent diabetes mellitus, gallbladder disease, respiratory dysfunction, gout, and osteoarthritis (1,25,26). Our results therefore cannot be extrapolated to all obese subjects. Second, since we did not evaluate genotypes of enzymes involved in Hcy metabolism and vitamin B6 status, it is unclear whether the present findings are related to genetic or nutritional factors. The third limitation of this study is that our analysis was based on a simple baseline determination that may not reflect subject status over long periods.

In conclusion, we found that Hcy levels were comparable between middle-aged obese and non-obese women (without other cardiovascular disease). Our data may suggest that increased cardiovascular risk in obesity may not be related to the Hcy level.

Table I: Clinical and laboratory parameters of the study groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Obese group (n=55)</th>
<th>Non-obese group (n=50)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47.2±9.2</td>
<td>46.3±9.5</td>
<td>NS</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>34.1±3.3</td>
<td>23.4±5.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting glucose (mg/dl)</td>
<td>86.5±5.3</td>
<td>85.48±10.34</td>
<td>NS</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dl)</td>
<td>51.6±15.2</td>
<td>52.8±16.7</td>
<td>NS</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dl)</td>
<td>120.0±29.5</td>
<td>118.6±30.2</td>
<td>NS</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>113.4±37.8</td>
<td>111.9±39.1</td>
<td>NS</td>
</tr>
<tr>
<td>Homocysteine (µmol/l)</td>
<td>10.3±3.5</td>
<td>10.1±3.8</td>
<td>NS</td>
</tr>
</tbody>
</table>

HDL: High-density lipoprotein, LDL: Low-density lipoprotein, NS: Not significant.

REFERENCES

